Sparse matrix computations are prevalent in many scientific and technical applications. In many simulation applications, the solving of the sparse matrix-vector multiplication (SpMV) is critical for ...
Sparse matrix computations are pivotal to advancing high-performance scientific applications, particularly as modern numerical simulations and data analyses demand efficient management of large, ...
“Several manufacturers have already started to commercialize near-bank Processing-In-Memory (PIM) architectures. Near-bank PIM architectures place simple cores close to DRAM banks and can yield ...
This paper presents a numerical comparison between algorithms for unconstrained optimization that take account of sparsity in the second derivative matrix of the objective function. Some of the ...
We consider the model y = Xθ* + ξ, Z = X + Ξ, where the random vector y ∈ ℝ n and the random n × p matrix Z are observed, the n × p matrix X is unknown, Ξ is an n × p random noise matrix, ξ ∈ ℝ n is a ...