A C implementation of Niederreiter's algorithm for factoring polynomials over F 2 is described. The most time-consuming part of this algorithm, which consists of setting up and solving a certain ...
If \((x \pm h)\) is a factor of a polynomial, then the remainder will be zero. Conversely, if the remainder is zero, then \((x \pm h)\) is a factor. Often ...
First, we need to find which number when substituted into the equation will give the answer zero. \(f(1) = {(1)^3} + 4{(1)^2} + (1) - 6 = 0\) Therefore \((x - 1)\)is a factor. Factorise the quadratic ...